calculo - 1.1.Clasificacion y Propoiedades de los muneros reales
 

INICIO
TEMARIO DE CALCULO
Unidad 1. Introduccion al calculo
1.1.Clasificacion y Propoiedades de los muneros reales
1.2.Recta numerica y concepto de Intervalo
1.3.Valor absoluto
1.4.Desigualdad
1.5.Funciones Algebraicas
1.6.Funciones trigonometricas y sus graficas
Unidad 2.Limites y Continuidad
2.1Definicion de limite
2.2Teoremas de limites
2.3Funciones continuas
UNIDAD 3.DERIVADA
3.1 Definicion de la derivada y definicon geometrica
3.2 Reglas para Calcular la Derivada
3.3Calculo de la derivada de funciones algebraicas por formula
3.4Derivadas de funciones transendentes (trigonometricas)
3.5Incrementos y Diferenciales
3.6Reglas de la cadena
unidad 4 Aplicacion de la derivada
4.1 La derivada como razon de cambio
4.3 Puntos maximos y minimos de funciones
4.4 Criterios de la 1° y 2° derivada
4.5 Calculos de los puntos de infleccion de una funcion
4.6 Ejercicios de aplicacion
unidad 5.- Teoremas para la solucion de integrales
5.1 Antiderivada
5.2 Integral definida
5.3 Propiedades de la integral definida
5.4 Teorema de valor medio para la integral
5.5 Teorema fundamental de calculo
unidad 6 Tecnicas de Integracion
6.1 Integracion por partes
6.2 Integrales Trigonometricas
6.3. Sustitucion Trigonometrica
6.4.Fracciones Parciales
6.5.Ejercicios de Aplicacion

Propiedades de los números reales

Recordemos que en secundaria y preparatoria se incluye en los programas de matemáticas procedimientos para sumar fracciones o números racionales, para multiplicar y dividir polinomios, para resolver ecuaciones lineales y cuadráticas, para factorizar expresiones algebraicas, por mencionar algunos. En cada uno de estos temas se utilizan números reales.

La idea fundamental en esta sección es la de poder resumir todas las propiedades algebraicas de los números reales que hemos utilizado o que se puedan utilizar.

La pregunta es: Qué propiedades elementales bastarán para concluir a partir de ellas todas las demás propiedades que se cumplen en álgebra elemental? Qué tanto las podemos resumir? puesto que si hiciéramos una lista con todas las propiedades que sabemos que se cumplen fácilmente pasarían de cien.

La siguiente es una lista con seis propiedades básicas, las cuales bastan para caracterizar completamente las propiedades algebraicas de campo de los números reales. Esto es, de aquí se pueden deducir las demás propiedades.

Los números reales son un conjunto R con dos operaciones binarias + y * el cual satisface los siguientes axiomas.

Axioma 1 Cerradura
Si a y b están en R entonces a+b y a*b son números determinados en forma única que están también en R.

Axioma 2 Propiedad Conmutativa (Suma y Multiplicación)

Si a y b están en R entonces a+b = b+a y a*b = b*a.

Axioma 3 Propiedad Asociativa. (Suma y Multiplicación)

Si a, b y c están en R entonces a+(b+c) = (a+b)+c y a*(b*c) = (a*b)*c

Axioma 4 Propiedad Distributiva.

Si a, b y c están en R entonces a*(b+c) = ab+ac

Axioma 5 Existencia de Elementos neutros.

R contiene dos números distintos 0 y 1 tales que a+0 = a, a*1 = a para a que pertenece a los reales.

Axioma 6 Elementos inversos .

Si a está en R entonces existe un (-a) en R tal que a + (-a) = 0 Si a está en R y a es diferente de 0 entonces existe un elemento 1/a en R tal que a*(1/a) = 1.

 
Hoy habia 17 visitantes (21 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis