calculo - 1.5.Funciones Algebraicas
 

INICIO
TEMARIO DE CALCULO
Unidad 1. Introduccion al calculo
1.1.Clasificacion y Propoiedades de los muneros reales
1.2.Recta numerica y concepto de Intervalo
1.3.Valor absoluto
1.4.Desigualdad
1.5.Funciones Algebraicas
1.6.Funciones trigonometricas y sus graficas
Unidad 2.Limites y Continuidad
2.1Definicion de limite
2.2Teoremas de limites
2.3Funciones continuas
UNIDAD 3.DERIVADA
3.1 Definicion de la derivada y definicon geometrica
3.2 Reglas para Calcular la Derivada
3.3Calculo de la derivada de funciones algebraicas por formula
3.4Derivadas de funciones transendentes (trigonometricas)
3.5Incrementos y Diferenciales
3.6Reglas de la cadena
unidad 4 Aplicacion de la derivada
4.1 La derivada como razon de cambio
4.3 Puntos maximos y minimos de funciones
4.4 Criterios de la 1° y 2° derivada
4.5 Calculos de los puntos de infleccion de una funcion
4.6 Ejercicios de aplicacion
unidad 5.- Teoremas para la solucion de integrales
5.1 Antiderivada
5.2 Integral definida
5.3 Propiedades de la integral definida
5.4 Teorema de valor medio para la integral
5.5 Teorema fundamental de calculo
unidad 6 Tecnicas de Integracion
6.1 Integracion por partes
6.2 Integrales Trigonometricas
6.3. Sustitucion Trigonometrica
6.4.Fracciones Parciales
6.5.Ejercicios de Aplicacion

Función algebraica

En matemáticas, una función algebraica es una función que satisface una ecuación polinómica cuyos coeficientes son a su vez polinomios. Por ejemplo, una función algebraica de una variable x es una solución y a la ecuación

a_n(x)y^n+a_{n-1}(x)y^{n-1}+cdots+a_0(x)=0

donde los coeficientes ai(x) son funciones polinómicas de x. Una función que no es algebraica es denominada una función trascendente.

En términos más precisos, una función algebraica puede no ser estrictamente una función, por lo menos no en el sentido convencional. Por ejemplo sea la ecuación de una circunferencia:

y^2+x^2=1.,

La misma determina y, excepto por su signo:

y=pm sqrt{1-x^2}.,

Sin embargo, se considera que ambas ramas pertenecen a la "función" determinada por la ecuación polinómica.

Una función algebraica de n variables es definida en forma similar a la función y que es solución de la ecuación polinómica en n + 1 variables:

p(y,x_1,x_2,dots,x_n)=0.,

Normalmente se supone que p debe ser un polinomio irreducible. La existencia de una función algebraica es asegurada por el teorema de la función implícita.

Formalmente, una función algebraica de n variables en el cuerpo K es un elemento del cierre algebraico del cuerpo de las funciones racionales K(x1,...,xn). Para poder comprender a las funciones algebraicas como funciones, es necesario incorporar ideas relativas a las superficies de Riemann o en un ámbito más general sobre variedades algebraicas, y teoría de haces.


Funciones algebraicas

          Lo que sigue, como lo anterior, referente a la representación gráfica de funciones sólo es una introducción al tema. La gráfica de algunas funciones presentan caracteristicas especiales que para su estudio se requiere del Cálculo. Tales características son, por ejemplo, las asíntotas horizontales y verticales (se deducen a partir de límites), asíntotas oblicuas; determinar los intervalos donde la gráfica de la función es decreciente y donde es creciente (cálculo diferencial); precisar en qué intervalos la gráfica es cóncava hacia arriba y dónde lo es hacia abajo, hallar los puntos de inflexión (puntos donde ocurre el cambio de concavidad) (cálculo diferencial); máximos y mínimos; etc. El estudio de estos temas están incluidos en esta página, Cálculo21.

  Funciones algebraicas:

          Las funciones algebraicas son aquellas construidas por un número finito de operaciones algebraicas (suma, resta, multiplicación, división, potenciación y radicación) aplicadas a la función identidad,  f (x) = x, y a la función constante,  f (x) = k.

En general, las funciones algebraicas abarcan a las funciones polinomiales, racionales y las llamadas algebraicas explícitas.

 Función polinomial:

MathType 5.0 Equation

El dominio de la función polinomial es el conjunto de los números reales.

Ejemplos particulares de la función polinomial son, la función lineal (función polinomial de grado uno), la función cuadrática (función polinomial de segundo grado), función cúbica (función polinomial de tercer grado).

 Función lineal:

           La función lineal (función polinomial de primer grado) es de la forma  y = f (x) = ax + b; a y b son números dados; el dominio y contradominio es el conjunto de todos los números reales.

La gráfica de cualquier función lineal es una línea recta. La a representa la pendiente de la recta y b, el intercepto con el eje y (u ordenada en el origen). Como por dos puntos diferentes, en el plano cartesiano, se puede trazar una sóla línea recta, basta con calcular las coordenadas de dos de los puntos para trazar la gráfica de una función lineal; es conveniente que dichos puntos sean los interceptos con los ejes del plano. Como ya mencionamos antes, el intercepto con el ejey, es b; para hallar el intercepto con el eje x (o abscisa en el origen),  se iguala la ecuación de la función a 0 y se despeja el valor respectivo para x.  

          Para ver ejercicios resueltos sobre este tema haga clic en el siguiente enlace: Ejercicio 169.


 Función constante:

          Se puede considerar a la función constante como un caso particular de la función lineal cuando se hace x = 0. La función constante se define como:

MathType 5.0 Equation

El dominio de la función constante es el conjunto de los números reales y el codominio es k.

La gráfica de la función constante es una línea recta paralela al ejex, y corta al ejey en y = k.


 Función identidad:

        La función identidad es una función lineal con a = 1  y  b = 0. La función lineal se define por:

MathType 5.0 Equation

El dominio y el codominio de la función identidad es el conjunto de los números reales.

La función identidad biseca los cuadrantes I y III.

Observe su gráfica a la derecha

 

Imagen de mapa de bits
 
Hoy habia 25 visitantes (29 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis