Integrales trigonométricas
Si la integral es trigonométrica tened en cuenta las siguientes identidades:
sen2x + cos2x = 1
1 + tag2x = sec2x
1 + cot2x = csc2x
sen2x = 1/2(1 - cos2x)
cos2x = 1/2(1 + cos2x)
senx cosx = 1/2sen2x
senx cosy = 1/2[sen(x - y) + sen(x + y)]
senx seny = 1/2[cos(x - y) - cos(x + y)]
cosx cosy = 1/2[cos(x - y) + cos(x + y)]
1 - cosx = 2sen21/2x
1 + cosx = 2cos21/2x
1 + sen x = 1 + cos(1/2p - x)
1 - sen x = 1 - cos(1/2p - x)
Especialmente importantes son estas dos identidades:
sen x = (2 tan(x/2))/(1 + tan2(x/2))
cos x = (1 - tan2(x/2))/(1 + tan2(x/2))
Haciendo t = tan x/2, nos queda:
sen x = 2t/(1 + t2)
cos x = (1 - t2)/(1 + t2)
dx = 2 dt/(1 + t2)