calculo - 1.6.Funciones trigonometricas y sus graficas
 

INICIO
TEMARIO DE CALCULO
Unidad 1. Introduccion al calculo
1.1.Clasificacion y Propoiedades de los muneros reales
1.2.Recta numerica y concepto de Intervalo
1.3.Valor absoluto
1.4.Desigualdad
1.5.Funciones Algebraicas
1.6.Funciones trigonometricas y sus graficas
Unidad 2.Limites y Continuidad
2.1Definicion de limite
2.2Teoremas de limites
2.3Funciones continuas
UNIDAD 3.DERIVADA
3.1 Definicion de la derivada y definicon geometrica
3.2 Reglas para Calcular la Derivada
3.3Calculo de la derivada de funciones algebraicas por formula
3.4Derivadas de funciones transendentes (trigonometricas)
3.5Incrementos y Diferenciales
3.6Reglas de la cadena
unidad 4 Aplicacion de la derivada
4.1 La derivada como razon de cambio
4.3 Puntos maximos y minimos de funciones
4.4 Criterios de la 1° y 2° derivada
4.5 Calculos de los puntos de infleccion de una funcion
4.6 Ejercicios de aplicacion
unidad 5.- Teoremas para la solucion de integrales
5.1 Antiderivada
5.2 Integral definida
5.3 Propiedades de la integral definida
5.4 Teorema de valor medio para la integral
5.5 Teorema fundamental de calculo
unidad 6 Tecnicas de Integracion
6.1 Integracion por partes
6.2 Integrales Trigonometricas
6.3. Sustitucion Trigonometrica
6.4.Fracciones Parciales
6.5.Ejercicios de Aplicacion

Funciones trigonométricas

La trigonometría es una ciencia antigua, ya conocida por las culturas orientales y mediterráneas precristianas. No obstante, la sistematización de sus principios y teoremas se produjo sólo a partir del siglo XVI, para incorporarse como una herramienta esencial en los desarrollos del análisis matemático moderno.

Concepto de función trigonométrica

Una función trigonométrica, también llamada circular, es aquella que se define por la aplicación de una razón trigonométrica a los distintos valores de la variable independiente, que ha de estar expresada en radianes. Existen seis clases de funciones trigonométricas: seno y su inversa, la cosecante; coseno y su inversa, la secante; y tangente y su inversa, la cotangente. Para cada una de ellas pueden también definirse funciones circulares inversas: arco seno, arco coseno, etcétera.

La función seno

Se denomina función seno, y se denota por f (x) 5 sen x, a la aplicación de la razón trigonométrica seno a una variable independiente x expresada en radianes. La función seno es periódica, acotada y continua, y su dominio de definición es el conjunto de todos los números reales.






 

La función cosecante puede calcularse como la inversa de la función seno expresada en radianes.

La función coseno

La función coseno, que se denota por f (x) = cos x, es la que resulta de aplicar la razón trigonométrica coseno a una variable independiente x expresada en radianes. Esta función es periódica, acotada y continua, y existe para todo el conjunto de los números reales.


La función secante se determina como la inversa de la función coseno para un ángulo dado expresado en radianes.

La función tangente

Se define función tangente de una variable numérica real a la que resulta de aplicar la razón trigonométrica tangente a los distintos valores de dicha variable. Esta función se expresa genéricamente como f (x) = tg x, siendo x la variable independiente expresada en radianes.


 

 
Hoy habia 23 visitantes (27 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis