Funciones trigonométricas
La trigonometría es una ciencia antigua, ya conocida por las culturas orientales y mediterráneas precristianas. No obstante, la sistematización de sus principios y teoremas se produjo sólo a partir del siglo XVI, para incorporarse como una herramienta esencial en los desarrollos del análisis matemático moderno.
Concepto de función trigonométrica
Una función trigonométrica, también llamada circular, es aquella que se define por la aplicación de una razón trigonométrica a los distintos valores de la variable independiente, que ha de estar expresada en radianes. Existen seis clases de funciones trigonométricas: seno y su inversa, la cosecante; coseno y su inversa, la secante; y tangente y su inversa, la cotangente. Para cada una de ellas pueden también definirse funciones circulares inversas: arco seno, arco coseno, etcétera.
La función seno
Se denomina función seno, y se denota por f (x) 5 sen x, a la aplicación de la razón trigonométrica seno a una variable independiente x expresada en radianes. La función seno es periódica, acotada y continua, y su dominio de definición es el conjunto de todos los números reales.
La función cosecante puede calcularse como la inversa de la función seno expresada en radianes.
La función coseno
La función coseno, que se denota por f (x) = cos x, es la que resulta de aplicar la razón trigonométrica coseno a una variable independiente x expresada en radianes. Esta función es periódica, acotada y continua, y existe para todo el conjunto de los números reales.
La función secante se determina como la inversa de la función coseno para un ángulo dado expresado en radianes.
La función tangente
Se define función tangente de una variable numérica real a la que resulta de aplicar la razón trigonométrica tangente a los distintos valores de dicha variable. Esta función se expresa genéricamente como f (x) = tg x, siendo x la variable independiente expresada en radianes.