calculo - 2.2Teoremas de limites
 

INICIO
TEMARIO DE CALCULO
Unidad 1. Introduccion al calculo
1.1.Clasificacion y Propoiedades de los muneros reales
1.2.Recta numerica y concepto de Intervalo
1.3.Valor absoluto
1.4.Desigualdad
1.5.Funciones Algebraicas
1.6.Funciones trigonometricas y sus graficas
Unidad 2.Limites y Continuidad
2.1Definicion de limite
2.2Teoremas de limites
2.3Funciones continuas
UNIDAD 3.DERIVADA
3.1 Definicion de la derivada y definicon geometrica
3.2 Reglas para Calcular la Derivada
3.3Calculo de la derivada de funciones algebraicas por formula
3.4Derivadas de funciones transendentes (trigonometricas)
3.5Incrementos y Diferenciales
3.6Reglas de la cadena
unidad 4 Aplicacion de la derivada
4.1 La derivada como razon de cambio
4.3 Puntos maximos y minimos de funciones
4.4 Criterios de la 1° y 2° derivada
4.5 Calculos de los puntos de infleccion de una funcion
4.6 Ejercicios de aplicacion
unidad 5.- Teoremas para la solucion de integrales
5.1 Antiderivada
5.2 Integral definida
5.3 Propiedades de la integral definida
5.4 Teorema de valor medio para la integral
5.5 Teorema fundamental de calculo
unidad 6 Tecnicas de Integracion
6.1 Integracion por partes
6.2 Integrales Trigonometricas
6.3. Sustitucion Trigonometrica
6.4.Fracciones Parciales
6.5.Ejercicios de Aplicacion

Teoremas de límites
     Para facilitar la obtención del límite de una función sin tener que recurrir cada vez a la definición Epsilón-Delta se establecen los siguientes teoremas.
Los teoremas se numeran consecutivamente para facilitar una futura referencia.
Nota: los teoremas se presentan sin demostración, pero quien quiera verla puede hacer clic en el vínculo correspondiente.

 Teorema de límite1:
Si  k es una constante y a un número cualquiera, entonces
MathType 5.0 Equation

 Teorema de límite2:
Para cualquier número dado a,
MathType 5.0 Equation

 Teorema de límite3:
Si m y b son dos constantes cualesquiera, entonces
MathType 5.0 Equation

 Teorema de límite4:
Documento Microsoft Office Word

 Teorema de límite5:
Documento Microsoft Office Word

 Teorema de límite6:
Si  f es un polinomio y a es un número real, entonces
MathType 5.0 Equation

 Teorema de límite7:
Si q es una función racional y a pertenece al dominio de q, entonces
MathType 5.0 Equation

 Teorema de límite8:
Documento Microsoft Office Word
 
 
Procedimiento para calcular límites
     Si es posible aplicar directamente las propiedades anteriores, el límite se calcula directamente. Con respecto a las propiedades, como la propiedad 6 se aplica a cualquier polinomio y las propiedades 1, 2, 3, y 4  implican funciones polinómicas es indistinto que nos refiramos a cada una de las propiedades 1 a 4 en particular que a la propiedad 6 cuando calculamos el límite de una función polinómica. Lo mismo, la propiedad 7 se aplica a una función racional y la propiedad 4 (III) también.
     Cuando al sustituir la a por x en la función nos da la forma indeterminada 0/0 es posible calcular el límite pero, previamente, hay que transformar la fórmula de la función de tal modo que, una vez hecha la simplificación pertinente, se pueda evitar la división por cero: para lograr esto disponemos de procedimientos algebraicos eficaces como la factorización, la conjugada, etc.
 Ejercicios resueltos
          Evalué los siguientes límites indicando la propiedad o propiedades que se aplican en cada paso:
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
MathType 5.0 Equation
 
Hoy habia 10 visitantes (14 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis