calculo - 3.4Derivadas de funciones transendentes (trigonometricas)
 

INICIO
TEMARIO DE CALCULO
Unidad 1. Introduccion al calculo
1.1.Clasificacion y Propoiedades de los muneros reales
1.2.Recta numerica y concepto de Intervalo
1.3.Valor absoluto
1.4.Desigualdad
1.5.Funciones Algebraicas
1.6.Funciones trigonometricas y sus graficas
Unidad 2.Limites y Continuidad
2.1Definicion de limite
2.2Teoremas de limites
2.3Funciones continuas
UNIDAD 3.DERIVADA
3.1 Definicion de la derivada y definicon geometrica
3.2 Reglas para Calcular la Derivada
3.3Calculo de la derivada de funciones algebraicas por formula
3.4Derivadas de funciones transendentes (trigonometricas)
3.5Incrementos y Diferenciales
3.6Reglas de la cadena
unidad 4 Aplicacion de la derivada
4.1 La derivada como razon de cambio
4.3 Puntos maximos y minimos de funciones
4.4 Criterios de la 1° y 2° derivada
4.5 Calculos de los puntos de infleccion de una funcion
4.6 Ejercicios de aplicacion
unidad 5.- Teoremas para la solucion de integrales
5.1 Antiderivada
5.2 Integral definida
5.3 Propiedades de la integral definida
5.4 Teorema de valor medio para la integral
5.5 Teorema fundamental de calculo
unidad 6 Tecnicas de Integracion
6.1 Integracion por partes
6.2 Integrales Trigonometricas
6.3. Sustitucion Trigonometrica
6.4.Fracciones Parciales
6.5.Ejercicios de Aplicacion


 

  

FUNCIONES TRASCENDENTES
Las funciones racionales y las irracionales, que han sido tratadas en las páginas anteriores, se denominan funciones algebraicas.

Las  funciones que no son algebraicas se llaman funciones trascendentes.

Son funciones trascendentales elementales 

  • Función exponencial: 

f(x)=ax; a > 0, a ¹ 1.

  • Función logarítmica:

    f(x)=loga(x); a > 0, a ¹ 1. Es inversa de la exponencial.

     

  • Funciones trigonométricas:

    También llamadas circulares

    f(x)=sen(x); f(x)=cos(x); f(x)=tg(x); f(x)=cosec(x); f(x)=sec(x) y f(x)=cotg(x)

Hay otras funciones elementales como las hiperbólicas y las inversas de éstas y de las trigonométricas, pero no pretendemos en esta unidad didáctica presentarlas todas y más bien analizar algunos casos, no excesivamente complicados, donde intervengan las primeras.

Debemos de tener en cuenta las siguientes observaciones para la hora de analizar las funciones trascendentes que se proponen en esta unidad didáctica:

  • f(x)=ax está definida para todo x en R

  • f(x)=a-x=(1/a)x, a>1, 0<1/a<1

  • f(x)=loga(x) está definida para x>0

  • Representaremos el logaritmo decimal log10(x) por log(x) y el logaritmo neperiano loge(x) por ln(x), siendo e=2,718281... el llamado número 'e'

  • f(x)=sen(x) y f(x)=cos(x) están definidas para todo valor de x. Su periodo es 2p

 
Hoy habia 5 visitantes (7 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis