calculo - 4.4 Criterios de la 1° y 2° derivada
 

INICIO
TEMARIO DE CALCULO
Unidad 1. Introduccion al calculo
1.1.Clasificacion y Propoiedades de los muneros reales
1.2.Recta numerica y concepto de Intervalo
1.3.Valor absoluto
1.4.Desigualdad
1.5.Funciones Algebraicas
1.6.Funciones trigonometricas y sus graficas
Unidad 2.Limites y Continuidad
2.1Definicion de limite
2.2Teoremas de limites
2.3Funciones continuas
UNIDAD 3.DERIVADA
3.1 Definicion de la derivada y definicon geometrica
3.2 Reglas para Calcular la Derivada
3.3Calculo de la derivada de funciones algebraicas por formula
3.4Derivadas de funciones transendentes (trigonometricas)
3.5Incrementos y Diferenciales
3.6Reglas de la cadena
unidad 4 Aplicacion de la derivada
4.1 La derivada como razon de cambio
4.3 Puntos maximos y minimos de funciones
4.4 Criterios de la 1° y 2° derivada
4.5 Calculos de los puntos de infleccion de una funcion
4.6 Ejercicios de aplicacion
unidad 5.- Teoremas para la solucion de integrales
5.1 Antiderivada
5.2 Integral definida
5.3 Propiedades de la integral definida
5.4 Teorema de valor medio para la integral
5.5 Teorema fundamental de calculo
unidad 6 Tecnicas de Integracion
6.1 Integracion por partes
6.2 Integrales Trigonometricas
6.3. Sustitucion Trigonometrica
6.4.Fracciones Parciales
6.5.Ejercicios de Aplicacion


CRITERIOS DE LA 1° Y 2° DERIVADA 

La base del presente criterio radica en observar que los máximos o mínimos locales son consecuencia de observar los siguientes hechos:

 

1.- Cuando la derivada es positiva la función crece.

2.- Cuando la derivada es negativa la función decrece.

3.- Cuando la derivada es cero la función tiene un máximo o un mínimo.

 

Sea f(x) una función y c un número en su dominio. Supongamos que existe a y b  con a<c<b tales que

 

1.-  f es continua en el intervalo abierto (a,b) (de acuerdo con el teorema de Rolle)

2.- f es derivable en el intervalo abierto (a,b), excepto quizá en c;

3.- f´(x) es positiva para todo x<c en el intervalo y negativa para todo x>c en el intervalo.

 Entonces f tiene un máximo local en c.

Nótese que un criterio similar puede tenerse para obtener un mínimo local, solo es necesario intercambiar  “positivo”  por “negativo”.

 

 

 

 

Criterio de la segunda derivada

 

Uno de los ordenes de derivación es el de la segunda derivada, aunque no es despreciable la utilización de las derivadas de orden superior, sobre todo en cálculo de errores. Curiosamente las aplicaciones físicas implican, por lo general, derivadas de segundo orden como podría ser las ecuaciones de movimiento.

 

En esta sección presentaremos una interpretación gráfica de los criterios de la segunda derivada que nos servirá para poder obtener los máximos o mínimos de una función. Antes de analizar como es la relación de la segunda derivada conoceremos algunas definiciones:

 

Definición.

Cóncava hacia abajo. Se dice que una función es  cóncava  hacia abajo cuando la primera derivada es  creciente en un intervalo abierto (a,b)

 

 

 

 
Hoy habia 26 visitantes (30 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis